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ABSTRACT 

A newly developed system for defining watertight volume geometry on imported foreign CAD models is described. This system 
is based on an overlay grid mesher that is being developed in the GAMBIT preprocessing code. It is being explored as an 
alternative way of cleaning dirty geometries. This overlay meshing based geometry cleanup enables an automatic volume 
reconstruction from inconsistent B-Rep surface geometries. These inconsistencies include common edges defined twice, small 
gaps, holes and overlapping of faces. This new approach holds the promise of higher automation levels, speed and robustness 
when compared to more traditional interactive cleanup methodologies. 
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1. INTRODUCTION 

Within one CAD system, it is generally easy for designers 
or analysts to create "clean” geometry with well-connected 
faces and watertight volumes. However, analysts often use 
different software tools to develop a finite element mesh 
for analysis.  
 
Unfortunately all CAD systems are unique in their handling 
of model tolerance, topology connectivity and geometry 
smoothing. Thus interoperability between different CAD 
and preprocessing programs is always a big obstacle to 
designers and analysts. This problem is particularly acute 
for analysts who find it advantageous to explore 
combinatorial uses of different vendors’ systems. The result 
of exporting and importing geometry using standard 
protocols such as STEP, IGES, native CAD formats and 
faceted representations is often a disconnected model with 
gaps or overlapping between surfaces. Hence importing a 
model with watertight volumes is difficult to achieve in 
practice. 
  

This problem is compounded by the fact that most volume 
meshing algorithms rely on a watertight volume. Thus 
different geometry healing or cleanup tools have been 
developed [1-4]. 

 
 

Figure 1 An example of dirty geometry imported 
from IGES. 

One approach to cleanup is to use direct geometry changing 
tools. However, these are computationally expensive, 
complex and often produce undesirable side effects or 
unacceptable models. GAMBIT has augmented these 
healing tools with virtual tools to connect/disconnect or 



merge/divide edges and faces; then stitches them into 
watertight volumes. This method of topology adjustment 
independent of geometry changes (i.e. virtual topology) is 
becoming more common in commercial software. A certain 
level of automation can be achieved using virtual topology 
operators and a user specified tolerance. This tolerance can 
be based on the tolerance of the original CAD system, a 
percentage of the shortest edge length, etc. However, such 
automation usually falls short for more complicated 
geometries. The cleaning of the remaining disconnected 
geometry, as well as other refeature/defeature operations, 
usually requires manual intervention. 
 
This paper explores a novel method that has the potential to 
provide a more automated tool for geometry cleanup. The 
input to the algorithm is the set of disconnected faces. The 
system automatically replaces the disconnected faces with 
newly constructed faces to create a watertight volume. 
 
This cleanup relies on the overlay-meshing algorithm. 
Overlay meshing [5], of which the more traditional 
Cartesian meshing [6] is a subset, is also newly developed 
in GAMBIT. It has a significant advantage in that it does 
not require volumes to perform the meshing process. 
Instead, it only uses faces as input. This enables it to 
provide a continuous domain with hex cells based on a set 
of surfaces. This paper details our method of leveraging 
this technology to produce a set of connected faces, 
resulting in a watertight volume when successful. Although 
this paper represents a preliminary investigation only, 
results are very promising. 
 

2.  OVERVIEW OF CURRENT GEOMETRY 
SYSTEM 

We are using GAMBIT as the framework for this 
technology and as such rely heavily on its geometry 
system. Therefore it's necessary to briefly introduce the 
basics of this system. GAMBIT provides a mixed pallet of 
geometrical representations including real (standard B-Rep), 
faceted, direct CAD and virtual as described below: 
 
• Real. GAMBIT employs a solid modeling kernel, 

ACIS, to provide basic geometric creation and 
modification functionality. We term this standard B-
Rep model as "real" geometry. 

• Faceted. A faceted geometry uses a set of direct facets 
(triangles) to describe the shape. These facets can 
originate from prior meshes or from faceted 
representations typically employed for graphical 
display.  

• Direct CAD. The direct CAD geometry relies on an 
external CAD system to supply the geometric 
functionality for the entities. These representations are 
then a set of appropriate pointers and associated data. 

• Virtual. A virtual entity does not have a geometric 
definition of its own, but is based on other entities. 
GAMBIT also provides virtual topology tools, which 
are used to edit the topological entities only of the 
object. Usually such virtual topology editing includes 

merging of adjacent entities of similar dimension, 
splitting of entities into parts, construction of 
individual virtual entities and connection of multiple 
representations of a single entity into one [7][8].  

 
To provide a unifying framework for these diverse types, 
GAMBIT has separated the topology from the geometry of 
all these types. This then enables topology operators 
independent of geometry, i.e. virtual topology. 
 
For efficiency, all four kinds of faces contain a triangular 
facet representation. GAMBIT uses this faceting as a fast 
approximated evaluation for graphics as well as for some 
geometry/mesh operations. Such a faceting is shown in 
Figure 2. 

 
Figure 2 A Faceted representation for a general 
face. 

3.   OVERLAY GEOMETRY CLEANUP  

The proposed technique in this study is to cleanup a dirty 
geometry by taking advantage of the overlay meshing tool 
in GAMBIT. In this chapter, a concise summary of the 
method developed will be presented and details of key 
procedures and important features will be discussed. 
 
The overlay cleanup technique can be divided into two 
phases, 1) edge intersections on a structured grid, and 2) 
geometry extraction from the intersected cells. These are 
described below.  

3.1 EDGE INTERSECTION COMPUTATIONS 
IN STRUCTURED GRID 

To calculate intersections, a simple structured grid is first 
projected over the geometry. Cells in the grid are then 
recursively refined until certain accuracy is achieved. 
While refining the cells, the intersection information 
between cell edges and the faceted representation of the 
dirty geometry are computed and stored with the edge. The 



result is a set of intersecting points on edges of the 
computed overlay grid structure, as described in the 
sections below. 
 

3.1.1 STRUCTURED BACKGROUND GRID 
GENERATION 

 

 
(a) 

 

 
(b) 

Figure 3 (a) A cylinder shaped model before 
overlay mesh. (b) Intersecting hexes generated 
using overlay mesher. 

The first step of the procedure is to overlay a structured 
grid over the dirty geometry domain. This procedure starts 
with a simple grid with a limited number of cells: typically 

one. Then cells in the grid are recursively refined as in a 
typical octree technique [9], until a desired accuracy is 
achieved. During this refinement, the cells having 
intersections with the dirty geometry are determined and 
refinement is carried out only for such cells. Unlike a 
typical octree mesher, any non-boundary cell can be 
deleted. This should reduce the required memory and 
computations significantly, and is being explored. Figure 3 
shows a boundary grid for a simple geometry. 
 

3.1.2 EDGE INTERSECTIONS 
For speed and memory efficiency, currently the overlay-
meshing tool only provides cutting information for the cell 
edges. Providing cutting information for cell faces, though 
not impossible, will significantly slow the performance of 
this algorithm. Thus the cleanup tool must deduce how the 
edge intersecting points would result in face cuts for each 
cell face. To assist in creation of correct face and cell cuts, 
we store the intersecting facet and the associated geometric 
face with each intersection edge. 

3.1.3 CELL SIZE CONTROL 
As briefly mentioned before, a simple grid is progressively 
refined into a final grid of uniform-sized cells. Basically, 
the finer the mesh, the more accurately the geometry will 
be reconstructed. The price is more memory and 
computation time. See Figure 4 (a) and (b) for a 
comparison of mesh size differences. Numerical 
experiments have shown that cell size control plays a 
crucial role in the following way. 

 
• Cell size dictates accuracy: 

Cell size plays a very important role, in that it not only 
determines the accuracy of the final geometry, but also 
affects whether the cleanup will be successful or not.  

This is because the overlay cleanup technology uses a 
linear interpolation to decide the cutting plane within each 
hex. Larger size meshes will lose geometry details more 
easily. If too many details are lost, it is impossible to 
recreate the volume. 

Since automated geometry cleanup is our goal, we have 
initially not utilized size functions [10] in that the process 
may become too complex for the user.  

• Memory and speed performance: 

The number of final crossing cells dominates the 
performance of the procedure. As a finer mesh is used, 
more memory usage and more computations for edge 
intersections are required. 



 
(a) 

 

 
(b) 

Figure 4 (a) Intersecting hexes generated using 
overlay mesher, mesh size = 1. (b) Intersecting 
hexes generated using overlay mesher, mesh size 
= 0.5 

• Over refinement costs: 

Over-refinement also affects the robustness of the cleanup 
procedure. In general, a finer mesh gives more accurate 
results than a coarser mesh does. However, in some cases, 
excessively small cells may cause a failure in the cleanup 
procedure. Typical examples are cases when there are 
several layers of cells falling in the gap of the dirty 
geometry or several layers of cells covering the overlap 
region. In such cases, the expected intersections in those 
cells are either totally lost or become too complex for our 
initial heuristic algorithms, as will be described later. 

Ultimately this will cause a failure in the geometry 
reconstruction.  Figure 5 schematically demonstrates the 
effect of over refinement on the robustness of the 
developed technique. In the first two figures, the current 
algorithm is able to match the two ends of the gap detected 
by taking advantage of neighbor information of the cells 
containing the gap ends. However, when there are one or 
more layers of cells between the gap ends, such as in the 
third figure, it is hard to match corresponding gap ends 
correctly. As a result, the current algorithm fails to 
reconstruct a volume when there are such cases due to the 
excessive refinement. It seems that the minimum meshing 
size should at least be larger than the largest gap size and 
larger than the largest overlap size of the model. Such a 
size would guarantee that no hex cell would sit in between 
the edges without any intersecting points (gap case), and 
guarantee that at most two layers of hex cells will cover the 
gap or the overlap. At present, our heuristics are not 
adequate to handle models with extensive overlapping 
areas. 
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Figure 5 Over refinement cost for a gap case 

3.2 GEOMETRY RECONSTRUCTION 
During geometry reconstruction, the intersecting points are 
connected into facets. These facets are then organized into 
new vertices, edges, faces, and finally into a volume. These 
techniques are described below. 
 
Following the creation of the overlay hex mesh, we get a 
list of intersecting cells along with intersecting points on 
each cell edge. Theoretically, a hex edge or a hex face can 
have any number of intersecting points. But, with a good 
meshing size, typically, a cell edge will have 0, 1 or 2 
intersecting points. Likewise, a cell face will have 0, 1, 2, 3 
or 4 intersecting points. If the geometry were clean 
(surfaces are connected), a cell face should never have only 
one intersecting point. However, if the cell edge is almost 
parallel to the intersecting facet, numerical difficulties 
prevent us from getting an accurate intersecting point. With 



additional complexity of dirty geometries, we will have cell 
faces that have only one intersecting point.  

With the completion of the meshing phase, the original 
geometry (faces) is discarded. A totally new set of faces is 
then created from the edge intersections (intersection points 
and facets) stored on the hex mesh. Thus, in the 
descriptions below, "edges" and "faces" shall refer to the 
new edges and faces being created rather than referring to 
the old faces of the original geometry. 

3.2.1 Split cell faces 

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)  
Figure 6 Different intersecting points’ pattern on 
one cell face, and how the edges get connected. 

The first step in the reconstruction process is to transform 
the edge intersections into face intersections, or edges that 
split the cell face. Creation of the face splits naturally 
depends on the number of cell edge intersecting points. For 
example, if a cell face has only two intersection points, then 
one can directly connect them into a splitting edge (6a). 
However, if a cell face has more than two intersection 
points, then ambiguities arise. Figure 6 shows a number of 
connection possibilities. This ambiguity can often be 
resolved based on the information stored with each 
intersection. For example, 6c shows a single intersection on 
each edge. If only 2 of the intersections were generated 
from facets directly connected to each other, then it is 
natural that these should be connected. Of course the more 
complicated connections require extensive heuristics. 
Empirically, we have found the most common cases to be 
1) two intersecting points on one cell face (6a) and 2) one 
face having four intersecting points and two of them on the 
same edge (6b). Figure 6 shows details of various edge 
creation methods. 

One special case, shown in Figure 6f, is when the original 
faces are intersecting each other. If the intersection is 
confined to one cell (see Figure 7 (a)), the small 
overlapping area will be automatically removed. When the 
overlap goes through two layers of cells (see Figure 7 (b)), 
there will be more than two intersecting points on one cell 
face (Face O). To handle this case, the code checks through 
the neighboring cell faces (Face A, B, C and D). The 
objective is to find where the facet connectivity stops. In 
this case, they are Face A and B. Once the terminating ends 

are found, they are retracted back to the crossing face. In 
this example intersection, points a and b are removed. This 
leaves the remaining points, c and d, to be connected 
appropriately. 

 

Dotted lines are the original facets’ orientations; 
Solid line is the final edge created.
Dotted lines are the original facets’ orientations; 
Solid line is the final edge created.  
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Dotted lines are the original facets’ connectivity; 
Solid line is the final edge created.  

(b) 

Figure 7 (a) One cell covers the intersecting 
facets. (b) Details on how to create edge on 
overlap case if two layers of cells cover the 
overlap. 



3.2.2 Single intersection face reduction  
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Figure 8 (a) A cell has intersection points A and B 
after mesh, find point C by satisfying b

a  = d
c . 
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Figure 8 (b) Using the same method to determine 
Point C from neighboring cells’ intersecting 
points A and B. 

After all cell faces have been examined and connected with 
appropriate edges, we collect all cells that have faces 
owning only one intersecting point. Then we check if any 
such cell has two neighboring single intersection faces. If 
any are found, we create a new intersecting point on the 
shared edge by interpolating with respect to the other two 
points (see Figure 8 (a)). Finally, for those cells not having 
neighboring faces, we compare neighboring faces on 
neighboring cells. If they happen to be connectible, as 

shown in Figure 8(b), we create a new intersection on their 
shared edge. At the end of this procedure, single 
intersection faces may still exist and these remain for later 
processing. 

3.2.3 Facet hex cuts 
The next step in the process is to use the splitting edges of 
the faces to create splitting facets of the cells. From the 
edges, we can find either one or two closed patches in each 
hex. We then facet each patch for better data processing by 
creating a center node and connecting the center node to all 
edges. Figure 9 illustrates how the cutting facets are 
generated. Note that some loops will not close as shown in 
Figure 9d. For these loops, we calculate a center point and 
generate facets with the edges of the open loop. 

 

( a ) No center point for 
closed 3-sided loop

( b ) Closed single loop

( c ) Closed double loop (d) Open single loop

( a ) No center point for 
closed 3-sided loop

( b ) Closed single loop

( c ) Closed double loop (d) Open single loop  
Figure 9 Creation of patches within each hex. 

3.2.4 Creation of faceted geometric faces 
These newly generated cell facets can be combined to form 
a geometric face. These are passed into our geometry 
converting tools just as if they were imported meshes. This 
converting tool will create faceted geometric faces based on 
either feature angles or facet groups that are initially passed 
in. We attempted to designate groups for the converting 
tool based on which original face it was closest to. We 
calculated the proximity by comparing the distance from 
the facet's center to the face. However, this tended to create 
zigzag shaped boundaries as shown in Figure 10 (a). 
Neighboring triangular facets tended to oscillate between 
different faces because the center points vary slightly in 
location. Also, geometry import often splits of a larger 
surface into an inappropriate set of smaller ones. Merging 
these back together is impossible using closest face 
approach. One advantage of the closest face method is that 
it tended to roughly maintain the existing geometric faces. 
Notice the edges bounding the bumping circular area in 



Figure 10 (a). Although the boundaries are jagged, there are 
still 2 faces as in the original input geometry.  In 
consideration of problems mentioned above, we finally 
decided to use a feature angle for the converting. This 
allows the conversion to create faces as smooth as it will. 
However, this is also problematic in that we will lose the 
original face boundaries.  This then may cause problems for 
the analyst when adding boundary conditions on faces. 
Since GAMBIT provides mechanisms to correct the 
conversion interactively, this solution was deemed 
adequate. 

Figure 10 (b) shows the result of using a feature angle 
based conversion method. Notice the face boundaries are 
much smoother even though the circular faces have been 
merged away. The smaller rectangular faces occur as part 
of hole filling as described below. 

 
(a) 

 
(b) 

Figure 10 Constructed geometry (a) by facet 
groupings based on proximity to original 
geometric faces (b) reconstructed with a feature 
angle (30 degree) 

3.2.5 Filling holes 
In order to create a watertight volume, each face edge 
should share two faces. As described above, there are cases 
where the edge intersecting points (Point L in Figure 11) 
are missing or left dangling. This leads to the open loops 
described earlier. These open loops then will form missing 
patches in the cell splitting when combined with neighbor 
cells. Figure 11 is an example of one edge missing an 
intersecting point and the resulting missing patch. Thus a 
hole in the faceted faces is formed. When there are more 
missing points in one hex as well as in neighboring hexes, 
the holes can grow larger with an irregular folded shape as 
the original geometry dictates. The code will collect all the 
connected edges that bound a hole, group them into loops, 
and try to create virtual faces on each of the loops. Here, 
points A, B, C, D, E, F, G, and H are intersecting points, 
point L is the missing intersecting point, and points I, G 
and K are points the code created when faceting the cutting 
plane in each hexes. The shaded area is the previously 
created facets’ face, while the area bounded by points A, D, 
G, F, K, C and I is the void space on which the code will 
attempt to create a virtual face. 
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Figure 11 Filling the hole represented by points A, 
D, G, F, K, C, I, A with a virtual face. 

3.2.6 Stitch volume 
If all above procedures are successful, we get a set of new 
geometric faces that are connected to each other. There will 
be no holes and no overlaps in between. They then form a 
watertight volume using a standard volume stitch operator. 

3.2.7 Connected faces instead of a volume 
For cases where the input is not a closed domain, e.g. just 
two disconnected faces, procedures 1-4 still can be used. 
However, if the geometry does not represent a volume in 
some gross way, then one would expect disconnected 
edges. This translates to “holes” that should not be filled. 
Thus, when filling holes in procedure 5, we check the loop 
to see if it covers a void space. The check is accomplished 



by using a bounding box. We check if all newly generated 
facets’ points are within the bounding box. If so, the loop 
doesn't define a void space. As a result, no virtual faces will 
be generated and no volume will be created. A warning 
message to alert the user to this fact is provided. 

 

 

 

4. EXAMPLES 

 
(a) 

 

 
(b) 

Figure 12 Mechanical pin (a) Volume created 
using mesh size  = 2. (b) Desired volume in 
GAMBIT 

Empirically we found that by using a proper meshing size, 
most of the dirty geometries can be converted into volumes, 
Figure 12 (a) shows a volume created for a column shaped 
geometry, and Figure 12 (b) shows the desired volume. 
Notice that some edges have been rounded and small 
virtual faces introduced to fill holes. Also, the edges have a 
limited zigzag effect due mainly to the overlay mesh 
position relative to the geometry. Figure 13 (a) shows the 
volume created for a mixer and Figure 13 (b) is the desired 
mixer in GAMBIT.  In this example, there are numerous 
virtual faces created to cover holes in the faceted 
representation. Although both examples create watertight 
volumes, there are a lot of small virtual faces that would 
need to be merged to simplify the geometry. 
 

 
(a) 

 
(b) 

Figure 13 Mixer example (a) Volume created using 
mesh size = 4, overall dimension ≈ 150. (b) 
Desired volume in GAMBIT. 



Figure 14 is an example where the current code fails to 
create a volume out of the dirty geometry, but we can see 
even in this case, the faces are created and connected to 
each other. This geometry has a lot of folded structures in 
the hair part so there are many cell edges intersecting the 
geometry more than once. The current implementation 
cannot handle such complex cases. As a result, many edges 
were missed and many virtual faces were employed to fill 
the void spaces. In this particular example, some loops are 
too degenerate to be handled in GAMBIT. Thus a final 
volume was not generated. 
 

 
(a) 

 
(b) 

Figure 14 Jack example (a) Geometry created 
using mesh size = 0.5. Overall dimension ≈ 30. 
Notice that there are very detailed geometries 
around the hair; it failed to create volume because 
some of the loops failed to create virtual faces. (b) 
Desired volume in GAMBIT. 

 

5. DISCUSSIONS AND FUTURE WORK 

This paper explores a geometry cleanup technique by using 
an overlay meshing tool. The whole procedure includes two 
phases: intersection computation with a structured grid and 
geometry reconstruction. By using some reasoning 
techniques, it is possible to recreate vertices, edges and 
faces, finally stitching them into volumes. 
 
While this work is only in the preliminary phase, it shows 
promise as an alternative to more manual cleanup methods. 
Advances are required to resolve the weaknesses 
discovered as follows: 
 
• A feature-based refinement is needed on the generated 

overlay grid. This would eliminate the dependence on 
mesh size and further reduce user input. It would also 
decrease the complexity of holes to be filled. 

• A method of extracting crisper edges is being 
explored. Since the edge intersections record the facet 
of the original geometry, it is thought that we can 
employ the facet normal information. Figure 15 shows 
how these normals could be used to improve the 
splitting edges of the cell faces, causing a similar 
improvement in the splitting facets. This is being 
explored. 

• A reduction in the number of virtual faces is needed. 
We believe this will occur as our heuristics for adding 
missing intersections matures. 

• It may be profitable to employ existing facets where 
available instead of reconstructing all of the facets. 
Then the method could focus on only those areas 
where gaps and overlaps exist. 
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Dotted line is the current edge; Solid lines 
are original facets.

Dotted lines are proposed new splitting 
edges; Solid lines are original facets.
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Dotted line is the current edge; Solid lines 
are original facets.

Dotted lines are proposed new splitting 
edges; Solid lines are original facets.  

Figure 15 Proposed improvements in cell face 
splits 
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